\(\int (d+e x)^2 (c d^2+2 c d e x+c e^2 x^2)^{5/2} \, dx\) [1051]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [F(-2)]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 32, antiderivative size = 39 \[ \int (d+e x)^2 \left (c d^2+2 c d e x+c e^2 x^2\right )^{5/2} \, dx=\frac {(d+e x) \left (c d^2+2 c d e x+c e^2 x^2\right )^{7/2}}{8 c e} \]

[Out]

1/8*(e*x+d)*(c*e^2*x^2+2*c*d*e*x+c*d^2)^(7/2)/c/e

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 39, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {656, 623} \[ \int (d+e x)^2 \left (c d^2+2 c d e x+c e^2 x^2\right )^{5/2} \, dx=\frac {(d+e x) \left (c d^2+2 c d e x+c e^2 x^2\right )^{7/2}}{8 c e} \]

[In]

Int[(d + e*x)^2*(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^(5/2),x]

[Out]

((d + e*x)*(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^(7/2))/(8*c*e)

Rule 623

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(b + 2*c*x)*((a + b*x + c*x^2)^p/(2*c*(2*p + 1)
)), x] /; FreeQ[{a, b, c, p}, x] && EqQ[b^2 - 4*a*c, 0] && NeQ[p, -2^(-1)]

Rule 656

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[e^m/c^(m/2), Int[(a +
b*x + c*x^2)^(p + m/2), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p] && EqQ[
2*c*d - b*e, 0] && IntegerQ[m/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \left (c d^2+2 c d e x+c e^2 x^2\right )^{7/2} \, dx}{c} \\ & = \frac {(d+e x) \left (c d^2+2 c d e x+c e^2 x^2\right )^{7/2}}{8 c e} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 28, normalized size of antiderivative = 0.72 \[ \int (d+e x)^2 \left (c d^2+2 c d e x+c e^2 x^2\right )^{5/2} \, dx=\frac {(d+e x) \left (c (d+e x)^2\right )^{7/2}}{8 c e} \]

[In]

Integrate[(d + e*x)^2*(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^(5/2),x]

[Out]

((d + e*x)*(c*(d + e*x)^2)^(7/2))/(8*c*e)

Maple [A] (verified)

Time = 2.70 (sec) , antiderivative size = 27, normalized size of antiderivative = 0.69

method result size
risch \(\frac {c^{2} \left (e x +d \right )^{7} \sqrt {c \left (e x +d \right )^{2}}}{8 e}\) \(27\)
default \(\frac {\left (e x +d \right )^{3} \left (c \,x^{2} e^{2}+2 x c d e +c \,d^{2}\right )^{\frac {5}{2}}}{8 e}\) \(35\)
gosper \(\frac {x \left (e^{7} x^{7}+8 e^{6} x^{6} d +28 d^{2} e^{5} x^{5}+56 d^{3} e^{4} x^{4}+70 d^{4} e^{3} x^{3}+56 e^{2} x^{2} d^{5}+28 x \,d^{6} e +8 d^{7}\right ) \left (c \,x^{2} e^{2}+2 x c d e +c \,d^{2}\right )^{\frac {5}{2}}}{8 \left (e x +d \right )^{5}}\) \(106\)
trager \(\frac {c^{2} x \left (e^{7} x^{7}+8 e^{6} x^{6} d +28 d^{2} e^{5} x^{5}+56 d^{3} e^{4} x^{4}+70 d^{4} e^{3} x^{3}+56 e^{2} x^{2} d^{5}+28 x \,d^{6} e +8 d^{7}\right ) \sqrt {c \,x^{2} e^{2}+2 x c d e +c \,d^{2}}}{8 e x +8 d}\) \(109\)

[In]

int((e*x+d)^2*(c*e^2*x^2+2*c*d*e*x+c*d^2)^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/8*c^2*(e*x+d)^7*(c*(e*x+d)^2)^(1/2)/e

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 131 vs. \(2 (35) = 70\).

Time = 0.64 (sec) , antiderivative size = 131, normalized size of antiderivative = 3.36 \[ \int (d+e x)^2 \left (c d^2+2 c d e x+c e^2 x^2\right )^{5/2} \, dx=\frac {{\left (c^{2} e^{7} x^{8} + 8 \, c^{2} d e^{6} x^{7} + 28 \, c^{2} d^{2} e^{5} x^{6} + 56 \, c^{2} d^{3} e^{4} x^{5} + 70 \, c^{2} d^{4} e^{3} x^{4} + 56 \, c^{2} d^{5} e^{2} x^{3} + 28 \, c^{2} d^{6} e x^{2} + 8 \, c^{2} d^{7} x\right )} \sqrt {c e^{2} x^{2} + 2 \, c d e x + c d^{2}}}{8 \, {\left (e x + d\right )}} \]

[In]

integrate((e*x+d)^2*(c*e^2*x^2+2*c*d*e*x+c*d^2)^(5/2),x, algorithm="fricas")

[Out]

1/8*(c^2*e^7*x^8 + 8*c^2*d*e^6*x^7 + 28*c^2*d^2*e^5*x^6 + 56*c^2*d^3*e^4*x^5 + 70*c^2*d^4*e^3*x^4 + 56*c^2*d^5
*e^2*x^3 + 28*c^2*d^6*e*x^2 + 8*c^2*d^7*x)*sqrt(c*e^2*x^2 + 2*c*d*e*x + c*d^2)/(e*x + d)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 241 vs. \(2 (36) = 72\).

Time = 0.97 (sec) , antiderivative size = 241, normalized size of antiderivative = 6.18 \[ \int (d+e x)^2 \left (c d^2+2 c d e x+c e^2 x^2\right )^{5/2} \, dx=\begin {cases} \sqrt {c d^{2} + 2 c d e x + c e^{2} x^{2}} \left (\frac {c^{2} d^{7}}{8 e} + \frac {7 c^{2} d^{6} x}{8} + \frac {21 c^{2} d^{5} e x^{2}}{8} + \frac {35 c^{2} d^{4} e^{2} x^{3}}{8} + \frac {35 c^{2} d^{3} e^{3} x^{4}}{8} + \frac {21 c^{2} d^{2} e^{4} x^{5}}{8} + \frac {7 c^{2} d e^{5} x^{6}}{8} + \frac {c^{2} e^{6} x^{7}}{8}\right ) & \text {for}\: c e^{2} \neq 0 \\\frac {\frac {d^{2} \left (c d^{2} + 2 c d e x\right )^{\frac {7}{2}}}{28} + \frac {\left (c d^{2} + 2 c d e x\right )^{\frac {9}{2}}}{18 c} + \frac {\left (c d^{2} + 2 c d e x\right )^{\frac {11}{2}}}{44 c^{2} d^{2}}}{c d e} & \text {for}\: c d e \neq 0 \\\left (c d^{2}\right )^{\frac {5}{2}} \left (\begin {cases} d^{2} x & \text {for}\: e = 0 \\\frac {\left (d + e x\right )^{3}}{3 e} & \text {otherwise} \end {cases}\right ) & \text {otherwise} \end {cases} \]

[In]

integrate((e*x+d)**2*(c*e**2*x**2+2*c*d*e*x+c*d**2)**(5/2),x)

[Out]

Piecewise((sqrt(c*d**2 + 2*c*d*e*x + c*e**2*x**2)*(c**2*d**7/(8*e) + 7*c**2*d**6*x/8 + 21*c**2*d**5*e*x**2/8 +
 35*c**2*d**4*e**2*x**3/8 + 35*c**2*d**3*e**3*x**4/8 + 21*c**2*d**2*e**4*x**5/8 + 7*c**2*d*e**5*x**6/8 + c**2*
e**6*x**7/8), Ne(c*e**2, 0)), ((d**2*(c*d**2 + 2*c*d*e*x)**(7/2)/28 + (c*d**2 + 2*c*d*e*x)**(9/2)/(18*c) + (c*
d**2 + 2*c*d*e*x)**(11/2)/(44*c**2*d**2))/(c*d*e), Ne(c*d*e, 0)), ((c*d**2)**(5/2)*Piecewise((d**2*x, Eq(e, 0)
), ((d + e*x)**3/(3*e), True)), True))

Maxima [F(-2)]

Exception generated. \[ \int (d+e x)^2 \left (c d^2+2 c d e x+c e^2 x^2\right )^{5/2} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((e*x+d)^2*(c*e^2*x^2+2*c*d*e*x+c*d^2)^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 127 vs. \(2 (35) = 70\).

Time = 0.28 (sec) , antiderivative size = 127, normalized size of antiderivative = 3.26 \[ \int (d+e x)^2 \left (c d^2+2 c d e x+c e^2 x^2\right )^{5/2} \, dx=\frac {1}{8} \, {\left (4 \, {\left (e x^{2} + 2 \, d x\right )} c^{2} d^{6} \mathrm {sgn}\left (e x + d\right ) + \frac {c^{2} d^{8} \mathrm {sgn}\left (e x + d\right )}{e} + 6 \, {\left (e x^{2} + 2 \, d x\right )}^{2} c^{2} d^{4} e \mathrm {sgn}\left (e x + d\right ) + 4 \, {\left (e x^{2} + 2 \, d x\right )}^{3} c^{2} d^{2} e^{2} \mathrm {sgn}\left (e x + d\right ) + {\left (e x^{2} + 2 \, d x\right )}^{4} c^{2} e^{3} \mathrm {sgn}\left (e x + d\right )\right )} \sqrt {c} \]

[In]

integrate((e*x+d)^2*(c*e^2*x^2+2*c*d*e*x+c*d^2)^(5/2),x, algorithm="giac")

[Out]

1/8*(4*(e*x^2 + 2*d*x)*c^2*d^6*sgn(e*x + d) + c^2*d^8*sgn(e*x + d)/e + 6*(e*x^2 + 2*d*x)^2*c^2*d^4*e*sgn(e*x +
 d) + 4*(e*x^2 + 2*d*x)^3*c^2*d^2*e^2*sgn(e*x + d) + (e*x^2 + 2*d*x)^4*c^2*e^3*sgn(e*x + d))*sqrt(c)

Mupad [F(-1)]

Timed out. \[ \int (d+e x)^2 \left (c d^2+2 c d e x+c e^2 x^2\right )^{5/2} \, dx=\int {\left (d+e\,x\right )}^2\,{\left (c\,d^2+2\,c\,d\,e\,x+c\,e^2\,x^2\right )}^{5/2} \,d x \]

[In]

int((d + e*x)^2*(c*d^2 + c*e^2*x^2 + 2*c*d*e*x)^(5/2),x)

[Out]

int((d + e*x)^2*(c*d^2 + c*e^2*x^2 + 2*c*d*e*x)^(5/2), x)